A(t)=-16t^2+64t+80

Simple and best practice solution for A(t)=-16t^2+64t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A(t)=-16t^2+64t+80 equation:



(A)=-16A^2+64A+80
We move all terms to the left:
(A)-(-16A^2+64A+80)=0
We get rid of parentheses
16A^2-64A+A-80=0
We add all the numbers together, and all the variables
16A^2-63A-80=0
a = 16; b = -63; c = -80;
Δ = b2-4ac
Δ = -632-4·16·(-80)
Δ = 9089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{9089}}{2*16}=\frac{63-\sqrt{9089}}{32} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{9089}}{2*16}=\frac{63+\sqrt{9089}}{32} $

See similar equations:

| 4=-2-s | | c+611=668 | | r+49=952 | | 6(-2)+5y=8 | | 8p=456 | | 2(3x-1+5)=-44 | | 26(c-56)=24700 | | 24=-4(10-a) | | 13(6x−12)+4x= | | 3x+25=−7 | | 5(20x-25)=155 | | 42=u^2+2 | | u-593=919 | | 2.8t+7,2=12,8 | | 4x+13=−(15x)+5 | | 4x+13=−15x+5 | | 21b=672 | | -2x+7=4x+6 | | t/13=27 | | 3(n-5)=-n-20 | | 3x+2-4(2x+3)=12 | | r-922=768 | | 13-(4+h)=3h | | 39=6(v+6)-3v | | r-922=-768 | | 13=3(y-5)+4y | | 9(w-4)-7w=5(3-2) | | 2z-1=-9 | | x(x+2)-13(x+2)=0 | | 9-x=4x+1 | | -10(x+15)+3x=39 | | 12=w/27 |

Equations solver categories